If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5y^2=135
We move all terms to the left:
1.5y^2-(135)=0
a = 1.5; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·1.5·(-135)
Δ = 810
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{810}=\sqrt{81*10}=\sqrt{81}*\sqrt{10}=9\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-9\sqrt{10}}{2*1.5}=\frac{0-9\sqrt{10}}{3} =-\frac{9\sqrt{10}}{3} =-3\sqrt{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+9\sqrt{10}}{2*1.5}=\frac{0+9\sqrt{10}}{3} =\frac{9\sqrt{10}}{3} =3\sqrt{10} $
| (3x+25)°2x°=180 | | X2+11x+11=0 | | -4v-48=4(v-6) | | a2−10a+25=49 | | (3a-4)=(2a+1) | | 16+13x=11x | | 2(3x+5)-(4x-7)=3(x-5)+x+10 | | 2(3x-5)-3(x+4)=5x | | -17-87=-6-2(7p-7) | | 20-3(2x-4)=7-4x | | x+x+13+x-5=4(2x-3)-2x | | 3x-14=2x-1 | | 11w=8 | | 4(m+5)=-20 | | (x+1)+(x-1)+(x-3)=51 | | 5^2x=3^2x+2*3^x+2*5^x | | X=5/3y-10 | | 9(p-4)=-8 | | (1+x)^10=0.4 | | (2y-7)(4-y)=0 | | -6/5v-7/3=-3/2 | | 3x/4-2+4+2=-1/2+1/4 | | 2n+220=6n | | 6(5)m=-90 | | 2c+-6(-2c+2)=-82+4c | | h–8= | | h–8=32 | | -13=c+7 | | 16n^2+20n+25=0 | | -5=-5-(-10+2j) | | -x+5+21=0 | | -15=-4x+21 |